Childhood Rhabdomyosarcoma Xenografts: Responses to DNA-interacting Agents and Agents Used in Current Clinical Therapy*

JANET A. HOUGHTON, RUBY L. COOK, PAMELA J. LUTZ and PETER J. HOUGHTON Division of Biochemical and Clinical Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38101, U.S.A.

Abstract—A laboratory model of childhood rhabdomyosarcoma (RMS) has been used to evaluate cytotoxic agents used in current clinical protocols, and DNA-reacting agents that have had either limited or no evaluation in this histiotype. Seven lines of RMS each derived from a different patient were grown as xenografts in immune-deprived mice, six of these being from specimens derived from previously untreated patients. Of the 'conventional' agents, vincristine was the most effective. Of the other agents evaluated [L-phenylalanine mustard (L-PAM), cis-dichlorodiammineplatinum (cis-DDP), mitomycin C and 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC)], L-PAM caused complete regressions in six of seven lines, including those resistant to cyclophosphamide. DTIC had marked activity in five tumors, and mitomycin C in three lines. Cyclophosphamide was active in five tumors, although efficacy was less marked in two lines in comparison to DTIC and mitomycin C.

INTRODUCTION

RHABDOMYOSARCOMA (RMS) arises de novo in skeletal muscle, and represents between 5 and 15%of all malignant solid tumors in children under 15 yr of age [1-3]; it is the most common soft tissue sarcoma in children [4,5]. Rhabdomyosarcomas are, in general, moderately sensitive both to radiation therapy [6, 7] and to several chemotherapeutic agents [8]. Using the combined modalities of surgery, chemotherapy and radiotherapy, patients with early stage disease may be cured. However, the prognosis for children with more advanced disease is poor [9]. Relatively few chemotherapeutic agents have been evaluated fully in childhood RMS [10], and of those that have been examined, cyclophosphamide [11, 12], actinomycin D [13, 14], vincristine [15, 16] and doxorubicin [17, 18] have shown activity. Complete responses to chemotherapy alone occur in approximately 20% of patients. Tumor regrowth during therapy suggests that conventional treatment is unable to eradicate disease

before the development of a drug-resistant clone, or that a resistant clone was present at the onset of therapy. In the treatment of RMS this presents a major problem, as cross-resistance between vincristine, actinomycin D and doxorubicin, three of the four agents used in primary treatment, has been well documented using model systems [19–23].

For the past several years, work in this laboratory has been directed toward developing a model of childhood RMS by growing specimens of neoplastic tissues as heterografts in immunedeprived mice. These xenografts show many biological similarities to the tumor of origin [24], and respond to chemotherapeutic agents known to be active against the clinical disease [25]. In this article we update our experience with 'conventional' agents used in the treatment of RMS using additional lines of tumor derived from previously untreated patients, and have used the model to evaluate different classes of agents that interact with DNA. Of particular note is the marked activity of the bifunctional alkylating agent L-phenylalanine mustard (L-PAM) against tumors intrinsically resistant or less sensitive to cyclophosphamide, and in one tumor derived from a child refractory to therapy with a regimen utilizing cyclophosphamide.

Accepted 27 December 1983.

^{*}Supported by Grant CH-156 from the American Cancer Society, CA 23099 from the National Cancer Institute and by ALSAC.

MATERIALS AND METHODS

cis-Dichlorodiammineplatinum (cis-DDP) and mitomycin C were gifts from Bristol Laboratories (Syracuse, NY). L-Phenylalanine mustard (L-PAM) was purchased from Sigma Chemical Co. (St. Louis, MO), and other agents were supplied through the pharmacy at this hospital.

Immune-deprivation

Female CBA/CaJ mice were thymectomized at 4 weeks of age and received a single administration of cytosine arabinoside 48 hr prior to whole-body irradiation (850 rad, 170 rad/min, ¹³⁷Cs source) at 7 weeks of age, as described previously [26].

Tumor lines

Tumor lines HxRhl2 and HxRhl8 have been described previously [24].

Xenograft HxRh28 was derived from a metastatic mass in the axilla. Both human specimen and xenograft have alveolar histology. HxRh30 and HxRh35 were grown from bone marrow samples and are poorly differentiated embryonal rhabdomyosarcomas. HxRh39 was derived from an abdominal tumor and is also a poorly differentiated embryonal rhabdomyosarcoma. With the exception of HxRh10, each line of xenograft was established from tissue specimens taken prior to any chemo- or radiation therapy. Each of these tumor lines is human, as determined by lactate dehydrogenase isoenzyme profiles [24] or karyotype analysis.

Chemotherapy

Tumor fragments were implanted subcutaneously into the flanks of mice 1-2 weeks after irradiation. The growth of tumors was assessed from the measurement of two perpendicular diameters at 7-day intervals using Vernier calipers, as described previously [25]. For assessment of chemosensitivity, response of tumors to a single administration of each agent was measured by determining the delay in tumor growth and the incidence of partial (≥50% regression) or complete regressions subsequent to treatment. Data are presented for the dose of each agent that was lethal in approximately 10% of tumor-bearing mice (LD₁₀). All agents were administered by intraperitoneal injection.

RESULTS

Data in Table 1 show the responses of seven lines of RMS to vincristine, actinomycin D, doxorubicin and cyclophosphamide, given as a single administration at equitoxic dose levels. In those xenografts derived from untreated specimens, VCR demonstrated the greatest activity in the

mouse, with responses in six of seven lines. Complete tumor regressions were measured in HxRh12, HxRh28, HxRh30 and HxRh35 xenografts. Cyclophosphamide and doxorubicin were active (>++) against five and three lines of xenograft respectively. Actinomycin D has shown activity only against HxRh18 and HxRh28 xenografts. None of these agents had significant activity against HxRh10 xenografts derived from a patient refractory to conventional therapy.

We were therefore interested in determining whether classes of agents, other than classical bifunctional alkylating agents, that interacted with DNA were active in the model, and also in determining whether xenografts with intrinsic or acquired resistance to cyclophosphamide were sensitive to 5-(3,3-disubstituted-1-triazeno)imidazole-4-carboximides (e.g. DTIC) or aromatic nitrogen mustards (e.g. L-phenylalanine mustard). The responses of HxRh12 and HxRh18 to a single administration of L-PAM, cyclophosphamide, cis-DDP, DTIC and mitomycin C are shown in Fig. 1. Responses of HxRh28 and HxRh39 are presented in Fig. 2. Cyclophosphamide demonstrated some activity in five tumor lines, HxRh12, HxRh18, HxRh28, HxRh30 and HxRh39, but was virtually inactive in HxRh35 and HxRh10. In contrast, L-PAM was very active against each xenograft line irrespective of the sensitivity to cyclophosphamide. In HxRh18 xenografts L-PAM possessed similar activity to cyclophosphamide, whereas in the remaining lines it was considerably more active. With the exception of the relatively uniform response to L-PAM. responses of these xenografts to each of the other agents was individual. Hence cis-DDP was active in three lines, and mitomycin C also demonstrated greater activity against three tumors. Five lines responded well to DTIC. The pattern of response in HxRh10 xenografts derived from a patient refractory to treatment with vincristine, cyclophosphamide, actinomycin D and doxorubicin are shown in Fig. 3. This tumor showed a transient response to mitomycin C, DTIC and cis-DDP, and although a significant volume reduction occurred after treatment, tumors regrew rapidly. Thus, although these agents demonstrated some activity in HxRhl0 tumors, this did not translate into a significant inhibition of tumor growth. Cyclophosphamide was inactive against HxRhl0 xenografts, although this tumor was exquisitely sensitive to L-PAM. The responses of the seven lines of xenografts to these agents are summarized in Table 2.

DISCUSSION

It is apparent that for the treatment of disseminated RMS there is need for additional

	LD ₁₀ dose (mg/kg)	Tumor line							
Agent/tumor‡		HxRh10§	HxRh12	HxRh18	HxRh28	HxRh30	HxRh35	HxRh39	
Vincristine	3	+	+++++	+++	+++++	+++++	++++	++	
Cyclophosphamide	150	-	++	+++	++++	++	+	++++	
Actinomycin D	0.3	-		++	++	-	±	-	
Doxorubicin	10	-	++	±	+++	-	-	++	
	Representation								
No growth inhibition	1						_		
Transient response, inhibition $< Td_2 +$							±		
Growth inhibition $\geq Td_2$							+		
Growth inhibition $\geq 2 \times \mathrm{Td}_2$								++	
Growth inhibition $\geq 3 \times Td_2$							+++		
Growth inhibition $\geq 3 \text{ Td}_2 + \text{volume regression} \geq 50\%$							++++		
Complete regression with subsequent regrowth								++++	

Table 1. Responsiveness* of human rhabdomyosarcoma xenografts to four agents used as primary therapy in the clinical disease

observation (≥84 days)

Complete regression with no regrowth of any tumors during the period of

[§]All tumor lines were established from previously untreated patients except for HxRh10, which was derived from a patient refractory to treatment with vincristine, cyclophosphamide, actinomycin D and doxorubicin.

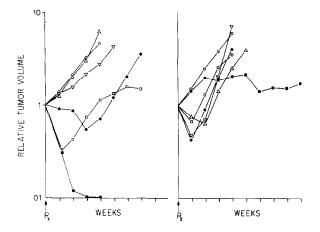


Fig. 1. The responses of HxRh12 (left) and HxRh18 xenografts to a single administration of agent given at the LD 10 level. ○ No treatment; • cyclophosphamide; □ DTIC; △ mitomycin C; ▷ cis-DDP; ■ L-PAM. Each curve represents the mean response between 10 and 14 tumors.

and more effective agents that are non-cross-resistant with those used in current therapy. The mechanism by which these agents are identified, however, remains the subject of considerable debate. Human tumors growing in immune-deprived or congenitally immunodeficient mice offer one approach to the development of models of specific human cancers in vivo, and there are now substantial data indicating that human tumor xenografts have a similar spectrum of sensitivity to their respective histiotypes in humans [25–29]. Such models may thus be of value in selecting agents that possess activity against a high proportion of tumors of a particular cancer type by virtue of exploiting

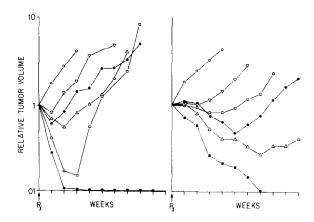


Fig. 2. The responses of HxRh28 (left) and HxRh39 xenografts to a single administration of agent given at the LD₁₀ level. ○ No treatment; • cyclophosphamide; □ DTIC; △ mitomycin C; ▽ cis-DDP; ■ L-PAM. Each curve represents the mean response between 10 and 14 tumors.

some as yet unknown metabolic characteristic. Goldin and Venditti [30] have suggested that it may be advisable to employ a small battery of human tumors of the same histologic type to reduce the incidence of false positive and false negative results in current screening programs. In this study we have used seven lines of childhood RMS, six of which were derived from untreated patient specimens. Of the 'standard' agents evaluated, VCR had the greatest activity in the model, causing complete regressions in four lines at the MTD. However, these data must be viewed with the insight that in the mouse dose-limiting toxicity is due to gastrointestinal damage and myelosuppression, whereas in man neurotoxicity precedes myelosuppression. Thus the model may

 $[\]dagger Td_2 = mean time for tumor volume to double.$

[‡]All agents were given by the i.p. route at equitoxic doses.

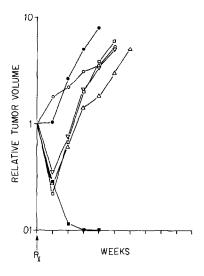


Fig. 3. The responses of HxRh10 xenografts to single agents.

○ No treatment; • cyclophosphamide; □ DTIC; △ mitomycin

C; ▽ cis-DDP; ■ L-PAM. Each curve represents the mean

response between 10 and 14 tumors.

be more sensitive to VCR in the mouse than in man.

This, of course, raises the question of how results derived using xenografts may be extrapolated to a clinical situation. For example, the N-demethylation of DTIC, required for activation, may proceed more rapidly in the mouse than in man. An analogous situation, the N-demethylation of pentamethylmelamine to form the cytotoxic N-methylolmelamine, proceeds more rapidly in the mouse and may contribute to the greater activity of this agent against human tumor xenografts than has been observed in the clinic [31]. Thus, with these limitations taken into consideration, we have evaluated the activity of several agents known to be active against RMS. The model ranks these agents as VCR > cyclophosphamide > doxorubicin > actinomycin D, which is a similar order to that reported in clinical evaluation against RMS.

Cyclophosphamide was used in these studies as the standard agent against which other DNAreacting agents were compared. Against xenografts derived from untreated specimens cyclophosphamide was active in five of six lines and cis-DDP in three tumors. Mitomycin C was very active in HxRh28, HxRh35 and HxRh39 tumors, whereas DTIC caused complete regressions in HxRh28 and HxRh35 and significant growth inhibition in three other lines (Table 2). None of these agents, or those used for conventional therapy (Table 1), had significant activity against the HxRhl0 xenograft line. In contrast, L-PAM had marked activity in all seven tumor lines, causing complete regressions in six lines, with no regrowths in four lines over the duration of the experiment (≥84 days). Of note is the activity of L-PAM in tumor lines that are considerably less sensitive to cyclophosphamide (HxRhl0, HxRhl2, HxRh28, HxRh30, HxRh35 and HxRh39). The HxRh10 xenograft developed from a surgical specimen derived from a heavily pretreated patient refractory to VCR, actinomycin D, cyclophosphamide and doxorubicin would appear to have the pleiotropic drug-resistant phenotype. However, in contrast to a cloned line of Chinese hamster ovary cells selected for resistance to colchicine, in which cross-resistance between natural products and L-PAM was observed [32], HxRhl0 remains very sensitive to this alkylating agent.

Data derived using these xenografts suggest that L-PAM in particular, but in addition DTIC and mitomycin C, may be of value in the clinical management of RMS. DTIC has demonstrated activity against RMS when used in combination [33, E. Etcubanas, personal communication]. We are aware of only one report in which L-PAM has been used in childhood RMS [34]. This patient had a complete response subsequent to L-PAM (≥120 mg/m²), with autologous bone marrow rescue. The data derived using the xenograft model suggest that RMS may be very sensitive to this agent at conventional dose levels. Whether this heterograft model identifies agents useful in the treatment of pediatric rhabdomyosarcoma remains to be tested prospectively.

Table 2. Responsiveness of xenografts of childhood rhabdomyosarcoma to DNA reacting agents*

Agent/tumor	LD ₁₀ dose (mg/kg)	HxRh10†	HxRhl2	HxRh18	HxRh28	HxRh30	HxRh35	HxRh39
L-PAM	13	+++++	+++++	+++	+++++	++++	+++++	+++++
Cyclophosphamide	150	-	++	+++	++++	++	+	++++
cis-DDP	7	±	+	++	++	+	+	++
Mitomycin C	3.25	+	_	+	++++	+	++++	++++
DTIC	200	±	+	+++	+++++	++++	+++++	+++

^{*}Agents administered as a single i.p. injection at equitoxic doses.

[†]HxRh10 derived from a patient refractory to vincristine, actinomycin D, doxorubicin and cyclophosphamide.

[‡]Responses were determined as for Table 1.

REFERENCES

- 1. Maurer HM, Moon T, Donaldson M et al. The Intergroup Rhabdomyosarcoma Study: a preliminary report. Cancer 1977, 40, 2015-2026.
- 2. Sutow WW, Sullivan MP, Reid HL, Taylor HG, Griffith KM. Prognosis in childhood rhabdomyosarcoma. Cancer 1970, 25, 1385-1390.
- 3. Young JL, Miller RW. Incidence of malignant tumors in U.S. children. *J Pediatr* 1975, **86**, 254-258.
- 4. Heyn RM. The role of chemotherapy in the management of soft tissue sarcomas. *Cancer* 1975, 35, 921-924.
- 5. Pinkel D, Pratt C. Embryonal rhabdomyosarcoma. In: Holland J, Frei E III, eds. Cancer Medicine. Philadelphia, PA, Lea and Febiger, 1973, 1900-1907.
- 6. McNeer GP, Cantin J, Chu F, Nickson JJ. Effectiveness of radiation therapy in the management of sarcomas of the soft tissues. *Cancer* 1968, 22, 391-397.
- 7. Edland RW. Embryonal rhabdomyosarcoma. Five year survival of a patient treated by radiation. Am J Roentol 1967, 99, 400-403.
- 8. Pratt CB, Hustu HO, Kumar APM, George SL. In: van Oosterom AT, ed. Therapeutic Progress in Ovarian Cancer, Testicular Cancer and the Sarcomas. The Hague, Martinus Nijoff, 1980, 439-452.
- 9. Maurer HM. Rhabdomyosarcoma. Pediatr Ann 1979, 8, 35-48.
- 10. Green DM, Jaffe N. Progress and controversy in the treatment of childhood rhabdomyosarcoma. Cancer Treat Rev 1978, 5, 7-27.
- 11. Haddy TB, Nora AH, Sutow WW, Vietti TJ. Cyclophosphamide treatment for metastatic soft tissue sarcomas (intermittent large doses in the treatment of children). Am J Dis Child 1967, 114, 301-308.
- 12. Pinkel D. Cyclophosphamide in children with cancer. Preliminary report. *Pediatrics* 1959, **23**, 342-347.
- 13. Farber S, D'Angio G, Evans A, Mitus A. Clinical studies of actinomycin D with special reference to Wilms' tumor in children. *Ann NY Acad Sci* 1960, 89, 421-424.
- Tan CTC, Dargeon HW, Burchenal JH. Effect of actinomycin D in childhood cancer. Pediatrics 1969, 24, 544-561.
- 15. James DH, George P. Vincristine in children with malignant solid tumors. *J Pediatr* 1964, **64**, 534-541.
- 16. Selawry OS, Hananian J. Vincristine treatment of cancer in children. *JAMA* 1963, 183, 741-746.
- 17. Pratt CB, Shanks EC. Doxorubicin in the treatment of malignant solid tumors in children. Am J Dis Child 1974, 127, 534-536.
- 18. Tan C, Rosen G, Ghavimi F et al. Adriamycin (NSC-123127) in pediatric malignancies. Cancer Chemother Rep 1975, 6, 259-266.
- 19. Danø K. Cross resistance between vinca alkaloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother Rep 1972, 56, 701-708.
- 20. Skovsgaard T. Mechanism of cross-resistance between vincristine and daunorubicin in Ehrlich ascites tumor cells. *Cancer Res* 1978, 33, 4722-4727.
- 21. Kaye SB, Boden JA. Cross-resistance between actinomycin D, adriamycin and vincristine in a murine solid tumor in vivo. Biochem Pharmacol 1980, 29, 1081-1084.
- 22. Inaba M, Johnson RK. Decreased retention of actinomycin D as the basis for cross-resistance in anthracycline-resistant sublines of P388 leukemia. *Cancer Res* 1977, 37, 4629-4634.
- 23. Baskin F, Rosenberg RN, Dev V. Correlation of double-minute chromosomes with unstable multidrug cross-resistance in uptake mutants of neuroblastoma cells. *Proc Natl Acad Sci USA* 1981, **78**, 3654–3658.
- 24. Houghton JA, Houghton PJ, Webber BL. Growth and characterization of childhood rhabdomyosarcomas as xenografts. *JNCI* 1982, **68**, 437-443.
- 25. Houghton, JA, Houghton PJ, Green AA. Chemotherapy of childhood rhabdomyosarcomas growing as xenografts in immune-deprived mice. *Cancer Res* 1982, 42, 535-539.
- 26. Steel GG, Courtenay VD, Rostom AY. Improved immune-suppression techniques for the xenografting of human tumours. *Br J Cancer* 1978, 27, 224-230.
- 27. Povlsen CO, Jacobsen J. Chemotherapy of a human malignant melanoma transplanted in the nude mouse. Cancer Res 1975, 35, 2790-2796.
- 28. Giulani FC, Zirvi KA, Kaplan NO, Goldin A. Chemotherapy of human colorectal tumor xenografts in athymic mice with clinically active drugs: 5-fluorouracil and 1,3-bis-(-2-chloroethyl)-1-nitrosourea (BCNU). Comparison with doxorubicin derivatives 4'-deoxydoxorubicin and 4'-O-methyl doxorubicin. Int J Cancer 1981, 27, 5-13.

- 29. Shorthouse AJ, Peckham MJ, Smyth JF, Steel GG. The therapeutic response of bronchial carcinoma xenografts: a direct patient-xenograft comparison. *Br J Cancer* 1980, 41, 142-145.
- 30. Goldin A, Venditti JM. A prospective screening program: current screening and its status. Recent Results Cancer Res 1981, 76, 176-191.
- 31. Rutty CJ, Newell DR, Muindi JRF, Harrap KR. The comparative pharmacokinetics of pentamethylmelamine in man, rat and mouse. *Cancer Chemother Pharmacol*, 1982, 8, 105-111.
- 32. Ling V, Thompson LH. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 1974, 83, 103-106.
- 33. Cangir A, Morgan SK, Land VJ, Pullen J, Starling K, Nitsche R. Combination chemotherapy with adriamycin (NSC 123127) and dimethyl triazeno imidazole carboxamide (DTIC) (NSC 45388) in children with metastatic solid tumors. *Med Pediatr Oncol* 1976, 2, 183-190.
- 34. Lazarus HM, Herzig RH, Graham-Pole J et al. Intensive melphalan chemotherapy and cryopreserved autologous bone marrow transplantation for the treatment of refractory cancer. J Clin Oncol 1983, 1, 359-366.